The project (BiowastetoH2) aims to contribute to the decarbonisation of the European energy system by producing green hydrogen from waste streams. This, the main objective of the project is the production of renewable hydrogen from residual streams from biomass pyrolysis by means of autothermal steam reforming integrated in a membrane reactor. Focuses on the development of innovative multifunctional membrane catalytic reactors (CMR) based on new catalysts and selective membranes to improve their performance, durability, cost-effectiveness and sustainability in self-thermal reforming (ATR) to produce pure hydrogen from components of the aqueous fraction of the bio-oil. Finally, a study will be carried out to determine the sustainability of the proposed hydrogen production process through life cycle analysis (LCA) from an environmental, thermo-economic, environmental and social point of view.
Dataverses destacados

Para usar esta funcionalidad ha de tener publicado o enlazado al menos un dataverse.

Publicar dataverse

¿Está seguro de que quiere publicar su dataverse? Una vez hecho esto, deberá permanecer publicado.

Publicar dataverse

Este dataverse no puede publicarse porque el dataverse al que pertenece no se ha publicado.

Eliminar dataverse

¿Está seguro de que quiere eliminar este dataverse? No podrá recuperarlo.

Búsqueda avanzada

31 a 35 de 35 Resultados
Texto plano - 8,7 KB - MD5: f0fdca7f3e62c33a65319fb66083d20e
17 jul 2025
MEGIA, Pedro J.; Rocha, Cláudio; Vizcaíno, Arturo; CARRERO, ALICIA; Calles, Jose A; Madeira, Luis Miguel; Soria, Miguel Angel, 2025, "A thermodynamic comparison between conventional, autothermal, and sorption-enhanced bio-oil steam reforming", https://doi.org/10.21950/7DRNUI, e-cienciaDatos, V1
This study presents a comprehensive thermodynamic analysis comparing three bio-oil steam reforming processes: traditional steam reforming, autothermal reforming, and sorption-enhanced steam reforming. Using Aspen Plus V12.1 software, simulations were performed to evaluate the hyd...
Texto plano - 7,7 KB - MD5: af8db23339faacc30063e51079730d8b
Añadir datos

Necesita identificarse para crear un dataverse o añadir un dataset.

Compartir dataverse

Compartir este dataverse en sus redes sociales favoritas.

Enlace al dataverse
Reiniciar modificaciones

¿Está seguro de que quiere reiniciar los campos de metadatos seleccionados?. Si lo hace, cualquier personalización (oculto, obligatorio, opcional) que haya hecho desaparecerá.