ID persistente
|
doi:10.21950/2JOAZJ |
Fecha de publicación
|
2025-03-27 |
Título
| The financial document causality detection shared task (FinCausal 2023): Dataset |
Autor
| Moreno-Sandoval, Antoniohttps://ror.org/01cby8j38ORCIDhttps://orcid.org/0000-0002-9029-2216
Carbajo-Coronado, Blancahttps://ror.org/01cby8j38ORCIDhttps://orcid.org/0000-0001-7693-0042
Porta, Jordihttps://ror.org/01cby8j38ORCIDhttps://orcid.org/0000-0001-5620-4916 |
Contacto
|
Utilice el botón de e-mail de arriba para contactar.
Moreno-Sandoval, Antonio (Universidad Autónoma de Madrid. Laboratorio de Lingüística Informática) |
Descripción
| The Financial Document Causality Detection Task (FinCausal 2023) aims at improving the causality in the financial domain trough its texts. Participants are asked to identify, in causal sentences, which elements of the sentence relate to the cause, and which relate to the effect. LLI-UAM is the organizer of the Spanish subtask. The task dataset has been extracted from a corpus of Spanish financial annual reports from 2014 to 2018. This shared task focuses on determining causality associated with both events or quantified facts. For this task, a cause can be the justification for a statement or the reason that explains a result. Therefore, it is a relationship detection task. The aim is to identify, in a paragraph, the causal elements and the consequential ones. Only one causal element and one effect are expected in each paragraph.
Participants are provided with a sample of paragraphs, labelled through inter-annotator agreement. This publication consists of the dataset of the shared task.
It is a dataset from the FinCausal 2023 competition. It is designed for participants to use the dataset for fine-tuning their models in order to complete the task with the highest possible similarity to the gold standard. It consists of texts annotated by linguists, highlighting the cause and effect present in a paragraph with a financial theme. |
Materia
| Ciencias de la información y computación |
Palabra clave
| dataset
FinCausal
shared task
causality
cause-effect
annual reports
financial texts |
Publicación relacionada
| MORENO-SANDOVAL, A., PORTA-ZAMORANO, J., CARBAJO-CORONADO, B., SAMY, D. MARIKO, D., EL-HAJ, M. (2023) 'The Financial Document Causality Detection Shared Task (FinCausal 2023)' in proceedings of the 5th Financial Narrative Processing Workshop (FNP 2023) at the 2023 IEEE International Conference on Big Data (IEEE BigData 2023). Sorrento, diciembre.
MORENO SANDOVAL, A., PORTA, J., CARBAJO-CORONADO, B., TORTEROLO, Y., SAMY, D. (2025) The Financial Document Causality Detection Shared Task (FinCausal 2025). In Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal), pages 214–221, Abu Dhabi, UAE. Association for Computational Linguistics.
PORTA-ZAMORANO, J., CARBAJO-CORONADO, B., MORENO-SANDOVAL, A. (2024). Extraction and Structuring of Financial Terminology. Procesamiento del Lenguaje Natural, 73, 139-149. DOI 10.26342/2024-73-10. handle http://hdl.handle.net/10486/715714
MORENO SANDOVAL, A., A. GISBERT, H. MONTORO (2020) 'Fint-esp: a corpus of financial reports in Spanish' en Miguel Fuster-Márquez, Carmen Gregori-Signes, José Santaemilia Ruiz (eds.): Multiperspectives in Analysis and Corpus Design, Granada: Editorial Comares, pp. 89-102. http://hdl.handle.net/10486/718875
MORENO SANDOVAL, A. (2021) 'Financial Narrative Processing in Spanish.' Tirant lo Blanch. ISBN papel: 9788418802423, ISBN ebook: 9788418802430.
References: Moreno-Sandoval, A., Campillos-Llanos, L., & García-Serrano, A. (2024). Language Resources in Spanish for Automatic Text Simplification across Domains (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2409.20466. handle http://hdl.handle.net/10486/715711 |
Notas
| Methodology:
- Collection of financial reports.
- Cleaning of the reports.
- Linguistic annotation of the cause and effect present in the paragraphs.
- Validation through IAA (inter-annotator agreement).
|
Idioma
| Español |
Información de la subvención
| Agencia Estatal de Investigación: PID2020-116001RB-C31 |
Depositante
| Moreno-Sandoval, Antonio |
Fecha de depósito
| 2025-03-13 |