Project:

A Benchmark for Rey-Osterrieth Complex Figure (ROCF) Test Automatic Scoring.

Abstract:

The Rey–Osterrieth complex figure (ROCF) test is a neuropsychological task that can be useful for early detection of cognitive decline in the elderly population. Several computer vision systems have been proposed to automate this complex analysis task, but the lack of public benchmarks does not allow a fair comparison of these systems. To advance in that direction, we present a benchmarking framework for the automatic scoring of the ROCF test that provides: the ROCFD528 dataset, which is the first open dataset of ROCF line drawings; and experimental results obtained by several modern deep learning models, which can be used as a baseline for comparing new proposals. We evaluate different state-of-the-art convolutional neural networks (CNNs) under traditional and transfer learning paradigms. Experimental quantitative results (MAE = 3.448) indicate that a CNN specifically designed for sketches outperforms other state of the art CNN architectures when the number of examples available is limited. This benchmark can also be a paradigmatic example within the broad field of machine learning for the development of efficient and robust models for analysis of line drawings and sketches not only in classification but also in regression tasks.

Source code:

https://github.com/SIMDA-UNED/rocf_automatic_scoring
Dataverses destacados

Para usar esta funcionalidad ha de tener publicado o enlazado al menos un dataverse.

Publicar dataverse

¿Está seguro de que quiere publicar su dataverse? Una vez hecho esto, deberá permanecer publicado.

Publicar dataverse

Este dataverse no puede publicarse porque el dataverse al que pertenece no se ha publicado.

Eliminar dataverse

¿Está seguro de que quiere eliminar este dataverse? No podrá recuperarlo.

Búsqueda avanzada

1 a 9 de 9 Resultados
Archivo ZIP - 18,8 MB - MD5: da974691168e1c67d41d28d6c04709ed
Datos
Name: rocfd528_grayscale_images Content: 528 grayscale images of Rey-Osterrieth Complex Figures. Format: Portable Network Graphics Language: English Version: 1
Archivo ZIP - 2,9 MB - MD5: 29d8a4f8415e8cdc6226b99b3ccd4e23
Datos
Name: rocfd528_binary_images Content: 528 binary images of Rey-Osterrieth Complex Figures. Format: Portable Network Graphics Language: English Version: 1
Archivo ZIP - 1,8 GB - MD5: 6d485af0349e4c711194396d89bc5be7
Data
Name: qdsd414k . Content: 414000 drawings of Quick, Draw! dataset distributed in several folders representing each of the classes and the subdivisions of the dataset (training, validation and test). Format: Portable Network Graphics . Version: 1
Añadir datos

Necesita identificarse para crear un dataverse o añadir un dataset.

Compartir dataverse

Compartir este dataverse en sus redes sociales favoritas.

Enlace al dataverse
Reiniciar modificaciones

¿Está seguro de que quiere reiniciar los campos de metadatos seleccionados?. Si lo hace, cualquier personalización (oculto, obligatorio, opcional) que haya hecho desaparecerá.