341 a 350 de 376 Resultados
8 nov. 2021 -
Reproducible experiments on word and sentence similarity measures for the biomedical domain
application/mac-compactpro - 10,4 GB -
MD5: 3c265c455fe16950e93ce03387bc92d0
This file contains all the dependencies and external sources for executing the experiments in [1]. IMPORTANT NOTE!. If main link fails you can download this file from https://doi.org/10.21950/Dependencies.tar.gz.cpt. In order to obtain a decrypt password for this, you should sign... |
8 nov. 2021 -
Reproducible experiments on word and sentence similarity measures for the biomedical domain
application/mac-compactpro - 6,3 GB -
MD5: 05370eef043129f0783b5901440c6cef
This file contains the Docker-based image with all the pre-installed software and tools for executing the experiments detailed in this dataset and develop in HESML V2R1. IMPORTANT NOTE!. If main link fails you can download this file from https://doi.org/10.21950/hesml_v2r1_docker... |
8 nov. 2021 -
Reproducible experiments on word and sentence similarity measures for the biomedical domain
Archivo ZIP - 100,9 GB -
MD5: 079326772685a95c86e0ed003137bd42
IMPORTANT NOTE!. If main link fails you can download this file from https://doi.org/10.21950/PreprocessedBioCCorpus.zip |
8 nov. 2021 -
Reproducible experiments on word and sentence similarity measures for the biomedical domain
Archivo Gzip - 39,0 GB -
MD5: 6ccf1d8b29b824cafd36ac1d3a238d1b
This file contains the Word Embedding pretrained models detailed in HESML V2R1 [1] and our pretrained model based on Fastext [3] in the BioC PMC Corpus [4].
Our pretrained model has been trained on Fastext skipgram model using the parameters from [1] in the BioC PMC Corpus [4].... |
Hoja de cálculo MS Excel - 19,2 KB -
MD5: 1c47892186d9cb9377f42b7d31c23b13
|
Adobe PDF - 58,8 KB -
MD5: e2cfd51cdc358cedc54f1eac093f9ca6
|
Texto plano - 5,2 KB -
MD5: d17301e3f50e28ab558722398490a878
|
3 jun. 2021 -
Formal concept analysis for topic detection: a clustering quality experimental analysis
Archivo Gzip - 2,7 MB -
MD5: c79dfaaeba4970321576a7ce1650b40f
|
3 jun. 2021 -
Formal concept analysis for topic detection: a clustering quality experimental analysis
Texto plano - 4,8 KB -
MD5: a4c7c08bab5647aea051fd0737be1b0e
|
Archivo Gzip - 574,8 KB -
MD5: 77aee55e76f1cf515b04740c746e524f
|