Other Reference
| [1] Akbik, A., Blythe, D., Vollgraf, R., 2018. Contextual string embeddings for sequence labeling, in: Proc. of the 27th International Conference on Computational Linguistics, Association for Computational Linguistics, Santa Fe, New Mexico, USA. pp. 1638–1649.; [2] Aronson, A.R., 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program, in: Proceedings of the AMIA Annual Symposium, ncbi.nlm.nih.gov. pp. 17–21.; [3] Aronson, A.R., Lang, F.M., 2010. An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 17, 229–236.; [4] Bojanowski, P., Grave, E., Joulin, A., Mikolov, T., 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics 5, 135–146.; [5] Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., St. John, R., Constant, N., Guajardo- Cespedes, M., Yuan, S., Tar, C., Strope, B., Kurzweil, R., 2018. Universal sentence encoder for English, in: Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing: System Demonstrations, Association for Computational Linguistics, Brussels, Belgium. pp. 169–174. doi:10.18653/v1/D18-2029.; [6] Comeau, D.C., Wei, C.H., Islamaj Doğan, R., Lu, Z., 2019. PMC text mining subset in BioC: about three million full-text articles and growing. Bioinformatics.; [7] Demner-Fushman, D., Rogers, W.J., Aronson, A.R., 2017. MetaMap lite: an evaluation of a new java implementation of MetaMap. J. Am. Med. Inform. Assoc. 24, 841–844.; [8] Devlin, J., Chang, M., Lee, K., Toutanova, K., 2019. BERT: pre-training of deep bidirectional transformers for language understanding, in: Burstein, J., Doran, C., Solorio, T. (Eds.), Proc. of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, (Long and Short Papers), Association for Computational Linguistics, Minneapolis, MN, USA. pp. 4171–4186. URL: https://doi.org/10.18653/v1/n19-1423, doi:10.18653/v1/n19-1423.; [9] Krause, E.F., 1986. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Courier Corporation, Online.; [10] Lara-Clares, A., Lastra-Dı́az, J.J., Garcia-Serrano, A., 2021. Protocol for a reproducible experimental survey on biomedical sentence similarity. PLoS One 16, e0248663.; [11] Lara-Clares, A., Lastra-Dı́az, J.J., Garcia-Serrano, A., 2022a. A reproducibility protocol and dataset on the biomedical sentence similarity. Protocol implemented in Protocols.io .; [12] Lara-Clares, A., Lastra Diaz, J.J., Garcia Serrano, A., 2022b. Reproducible experiments on word and sentence similarity measures for the biomedical domain. URL: https://doi.org/10.21950/EPNXTR, doi:10.21950/EPNXTR.; [13] Lastra-Dı́az, J.J., 2017. Recent Advances in Ontology-based Semantic Similarity Measures and Information Con- tent Models based on WordNet. Ph.D. thesis. Universidad Nacional de Educación a Distancia (UNED). http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-SisInt-Jjlastra.; [14] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2015a. A new family of information content models with an experimental survey on WordNet. Knowledge-Based Systems 89, 509–526.; [15] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2015b. A novel family of IC-based similarity measures with a detailed experimental survey on WordNet. Eng. App. of Artif. Intell. 46, 140–153.; [16] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016a. A refinement of the well-founded Information Content models with a very detailed exper- imental survey on WordNet. Technical Report TR-2016-01. UNED. http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement.; [17] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016b. HESML V1R1 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data v1.; [18] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016c. HESML V1R2 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v2.; [19] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016d. HESML vs SML: scalability and performance benchmarks between the HESML V1R2 and SML 0.9 semantic measures libraries. Mendeley Data, v1. http://doi.org/10.17632/5hg3z85wf4.1.; [20] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016e. WNSimRep: a framework and replication dataset for ontology-based semantic similarity measures and information content models. Mendeley Data v1. http://doi.org/10.17632/mpr2m8pycs.1.; [21] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016f. WordNet-based word similarity reproducible experiments based on HESML V1R1 and ReproZip. Mendeley Data, v1. http://doi.org/10.17632/65pxgskhz9.1.; [22] Lastra-Dı́az, J.J., Garcı́a Serrano, A., 2017. HESML V1R3 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v3.; [23] Lastra-Dı́az, J.J., Garcı́a Serrano, A., 2018. HESML V1R4 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v4. http://dx.doi.org/10.17632/t87s78dg78.4.; [24] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., Batet, M., Fernández, M., Chirigati, F., 2017. HESML: a scalable ontology-based semantic similarity measures library with a set of re- producible experiments and a replication dataset. Information Systems 66, 97–118.; [25] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019a. A large reproducible benchmark of ontology-based methods and word embeddings for word similarity. Submitted to Information Systems .; [26] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019b. A reproducible survey on word embeddings and ontology-based methods for word similar- ity: linear combinations outperform the state of the art. Engineering Applications of Artificial Intelligence 85, 645–665.; [27] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019c. Reproducibility dataset for a large experimental survey on word embeddings and ontology- based methods for word similarity. Data in Brief.; [28] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019d. Word similarity benchmarks of recent word embedding models and ontology-based seman- tic similarity measures. e-cienciaDatos, v1. http://dx.doi.org/10.21950/AQ1CVX.; [29] Li, Y., McLean, D., Bandar, Z.A., James, D.O., Crockett, K., 2006. Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18, 1138–1150.; [30] Miller, G.A., 1995. WordNet: A Lexical Database for English. Communications of the ACM 38, 39–41.; [31] Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J., Sohn, S., Kipper-Schuler, K.C., Chute, C.G., 2010. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, com- ponent evaluation and applications. J. Am. Med. Inform. Assoc. 17, 507–513.; [32] Shen, D., Wang, G., Wang, W., Min, M.R., Su, Q., Zhang, Y., Li, C., Henao, R., Carin, L., 2018. Baseline needs more love: On simple word-embedding-based models and associated pool- ing mechanisms, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, Australia. pp. 440–450. doi:10.18653/v1/P18-1041.; [33] Sogancioglu, G., Öztürk, H., Özgür, A., 2017. BIOSSES: a semantic sentence similarity estimation system for the biomedical domain. Bioinformatics 33, 49–58. |