Otras referencias
| [1] Aronson, A.R., 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program, in: Proceedings of the AMIA Annual Symposium, ncbi.nlm.nih.gov. pp. 17–21; [2] Lara-Clares, A., Lastra-Dı́az, J.J., Garcia-Serrano, A., 2021. Protocol for a reproducible experimental survey on biomedical sentence similarity. PLoS One 16, e0248663; [3] Lara-Clares, A., Lastra-Dı́az, J.J., Garcia-Serrano, A., 2022a. A reproducibility protocol and dataset on the biomedical sentence similarity. Protocol implemented in Protocols.io; [4] Lara-Clares, A., Lastra Diaz, J.J., Garcia Serrano, A., 2022b. Reproducible experiments on word and sentence similarity measures for the biomedical domain. URL: https://doi.org/10.21950/EPNXTR, doi:10.21950/EPNXTR; [5] Lara-Clares, A., Lastra DÃaz, J.J., Garcia Serrano, A., 2022c. HESML V2R1 Java software library of semantic similarity measures for the biomedical domain. URL: https://doi.org/10.21950/AQLSMV, doi:10.21950/AQLSMV; [6] Lastra-Dı́az, J.J., 2017. Recent Advances in Ontology-based Semantic Similarity Measures and Information Con- tent Models based on WordNet. Ph.D. thesis. Universidad Nacional de Educación a Distancia (UNED). http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-SisInt-Jjlastra; [7] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2015a. A new family of information content models with an experimental survey on WordNet. Knowledge-Based Systems 89, 509–526; [8] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2015b. A novel family of IC-based similarity measures with a detailed experimental survey on WordNet. Eng. App. of Artif. Intell. 46, 140–153; [9] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016a. A refinement of the well-founded Information Content models with a very detailed exper- imental survey on WordNet. 5 Technical Report TR-2016-01. UNED. http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-refinement; [10] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016b. HESML V1R1 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data v1; [11] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016c. HESML V1R2 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v2; [12] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016d. HESML vs SML: scalability and performance benchmarks between the HESML V1R2 and SML 0.9 semantic measures libraries. Mendeley Data, v1. http://doi.org/10.17632/5hg3z85wf4.1.; [13] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016e. WNSimRep: a framework and replication dataset for ontology-based semantic similarity measures and information content models. Mendeley Data v1. http://doi.org/10.17632/mpr2m8pycs.1.; [14] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., 2016f. WordNet-based word similarity reproducible experiments based on HESML V1R1 and ReproZip. Mendeley Data, v1. http://doi.org/10.17632/65pxgskhz9.1.; [15] Lastra-Dı́az, J.J., Garcı́a Serrano, A., 2017. HESML V1R3 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v3; [16] Lastra-Dı́az, J.J., Garcı́a Serrano, A., 2018. HESML V1R4 Java software library of ontology-based semantic similarity measures and information content models. Mendeley Data, v4. http://dx.doi.org/10.17632/t87s78dg78.4; [17] Lastra-Dı́az, J.J., Garcı́a-Serrano, A., Batet, M., Fernández, M., Chirigati, F., 2017. HESML: a scalable ontology-based semantic similarity measures library with a set of re- producible experiments and a replication dataset. Information Systems 66, 97–118.; [18] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019a. 6 A large reproducible benchmark of ontology-based methods and word embeddings for word similarity. Submitted to Information Systems; [19] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019b. A reproducible survey on word embeddings and ontology-based methods for word similar- ity: linear combinations outperform the state of the art. Engineering Applications of Artificial Intelligence 85, 645–665; [20] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019c. Reproducibility dataset for a large experimental survey on word embeddings and ontology- based methods for word similarity. Data in Brief; [21] Lastra-Dı́az, J.J., Goikoetxea, J., Hadj Taieb, M.A., Garcı́a-Serrano, A., Ben Aouicha, M., Agirre, E., 2019d. Word similarity benchmarks of recent word embedding models and ontology-based seman- tic similarity measures. e-cienciaDatos, v1. http://dx.doi.org/10.21950/AQ1CVX; [22] Miller, G.A., 1995. WordNet: A Lexical Database for English. Communications of the ACM 38, 39–41 |